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We present a von Neumann stability analysis of the equations 
of smoothed particle hydrodynamics (SPH) along with a critical 
discussion of various parts of the algorithm. The stability analysis 
is done without any major restrictions and, hence, models the full 
Euler equations in one dimension. This then allows us to deduce 
optimal ranges for parameters that need to be used in SPH. Thus 
we show that for the commonly used M5 spline the ratio of smooth- 
ing length to interparticle distance should range between 1.0 to 1.4. 
We also show that the linear artificial viscosity coefficient and the 
coefficient of spatial filtering have to be bounded. The results of 
this von Neumann stability analysis provide us with several sugges- 
tions for future algorithm improvement. Because the SPH method 
is so unique we provide, wherever possible, comparisons with 
more famil iar and well-used high resolution finite difference 
methods. © 1995 Academic Press, Inc. 

I. INTRODUCTION 

The particle method known as smoothed particle hydrody- 
namics (SPH from here on) was first developed in [4, 7]. It has 
been used for a variety of astrophysical applications (although 
almost never for any applications outside of astrophysics). 
However, the mathematical underpinnings of the method have 
not yet been thoroughly explored. As a result, a large variety 
of formulations exist and a large number of parameter settings 
in any practical SPH implementation are based on the scientists' 
intuition and subjective feeling about various aspects of the 
algorithm. Needless to say, that is not a very satisfactory situa- 
tion, particularly when the intuitions of different people can be 
vastly different. As a result, a large disparity exists on issues 
such as which interpolation kernel to use, what width of interpo- 
lation support is necessary before the fluid's continuum behav- 
ior is arrived at, how much numerical viscosity is necessary, 
how much spatial averaging is to be used, and which timestep- 
ping schemes are stable. The introduction of some mathematical 
rigor in resolving such issues could only improve the logical 
trusswork on which the scheme is founded. Moreover, it would 
serve as a guide in situations where more physics is added to 
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the equations or when the equations are extended to larger 
systems of hyperbolic equations. 

For finite difference methods such a logical framework has 
been built up over several decades by many workers. It is 
well known that the von Neumann stability analysis (see, for 
example, [14]) is one of the cornerstones for such a logical 
framework. Consistency and conservation are the other two. 
Taken together, they ensure the convergence of the discrete 
system to some weak solution of the system of hyperbolic 
equations. One still needs entropy enforcement in the sense of 
[13] to ensure that the convergence is to the physically correct 
entropy-satisfying weak solution. In its simplest form the von 
Neumann stability analysis requires analyzing the linear stabil- 
ity of sinusoidal modes in the interior part of the computational 
domain. For most equations and for most systems of equations, 
this interior mode analysis is perfectly adequate and leaves one 
with only the additional onus of constructing accurate and stable 
boundary conditions. In this paper, we present such a yon 
Neumann stability analysis for SPH. We find that a detailed 
von Neumann stability analysis of the SPH equations allows 
one to resolve many of the issues that have bearing on the 
quality of an SPH simulation. These issues have been treated 
only subjectively so far. In [12] an effort was made to under- 
stand the problems associated with particle penetration in SPH. 
However, in that work the author was interested in the dissipa- 
tion and dispersion of certain averaging terms he had added to 
the position update equations. In that work he restricted his 
analysis to the long wavelength limit. We find that much insight 
is lost when one makes approximations consistent with such 
limits. An analysis done in such limits cannot even begin to 
resolve the above issues because it does not adequately repre- 
sent the entropy wave and the forward and backward propagat- 
ing sound waves. In this paper we carry out the full analysis 
without any of the above stated restrictions and thoroughly 
explore the implications of such an analysis. 

In Section II we give the mathematical background for the 
method. In Section III we give the results of the analysis and 
in Section IV we give the conclusions and a critical discussion 
of how SPH fares vis h vis current high resolution finite differ- 
ence methods. A large appendix provides various mathematical 
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details which the reader can refer to according to need and in- 
terest. mb + ( 1 -  

P~/ 
O~/Z,b +/3/~]h) V,, W,,h (2) 

II. LINEAR MODE ANALYSIS 

II. a. S P H  Time Evolution Equations 

We start our analysis by considering the basic SPH equations 
in one dimension, yon Neumann stability analyses for multidi- 
mensions have not yet been attempted. However, insights into 
the multidimensional behavior can be obtained by thinking 
of the multidimensional kernel as a tensor product of one- 
dimensional kernels in each of the principal directions. In theory 
a good SPH interpolation scheme that conserves global mass, 
linear momentum, and total energy can be obtained by using 
such a tensor product; however, in practical implementations 
one prefers the use of spherically symmetric kernels. The spheri- 
cal symmetry guarantees angular momentum conservation. Yet 
thinking of the multidimensional kernel as tensor products of 
one-dimensional kernels yields valuable insight into wave prop- 
agation, the choice of kernels, and the choice of smoothing 
lengths for those kernels. 

A clear derivation of the equations of SPH has been given 
in [11]. We assume that the particles are set down along the x 
direction at uniform intervals Ax from each other. For the 
purpose of simplicity, the particles all have equal mass and a 
fixed smoothing length h. The particles are labeled by integer 
subscripts " a "  and " b "  which range from minus infinity to 
plus infinity. The primitive variables assigned to each particle 
are those of mass, velocity, and specific thermal energy. The 
density at each (moving) particle position is then defined to be 
a suitable tapered average of the masses of neighboring particles 
within a certain radius. Thus the density at a point can be 
denoted by 

+ ~  

pa = ~ mbW(Xb--  X,). (1) 
b = - ~  

Here mb is the mass of particle " b "  and the function W(xh - 
xa) supplies the tapered average and is known as the smoothing 
(or interpolation) kernel. The equations for momentum and 
energy update can also be derived by local tapered averages 
of the nonconservative forms of the Euler equations. The deriva- 
tion is nontrivial and the interested reader is referred to [11]. 
Unlike modern day higher order total variation diminishing 
(henceforth TVD) schemes, SPH does not rely on Riemann 
solvers and local conservation to capture shocks. For a defini- 
tion of the TVD property see [5]. In fact, in SPH the time 
update is not based on the construction of higher order fluxes 
and so SPH has no local conservation form. Instead, SPH relies 
on the older artificial viscosity formulation for capturing shocks. 
The equations for the time-evolution of the particle's velocity 
at a fiducial particle " a "  can then be written as 

and the equation for the time-evolution of the specific thermal 
energy can be written as 

--;7 = ~ mb + (I-ottz,h+/3txZb)v,i,'V,,W~h 
P'b / 

(3) 

In the equations above, the derivatives on the left-hand sides 
are total derivatives since the advection is represented by the 
particle's motion. P,, is the pressure at particle " a "  and is 
evaluated using the energy uu, the density p, and the equation 
of state, tz,,t, is a shock term and a and/3 are coefficients of 
linear and quadratic viscosity and v,,b is the difference in velocity 
between particle " a "  and "b . "  

The shock term/x,,b that is used in SPH is different from the 
shock terms that are used in most parabolized finite difference 
codes. Such finite difference codes rely on a scalar artificial 
viscosity [17], or a tensor artificial viscosity [16]. A direct 
transcription of the von Neumann and Richtmeyer artificial 
viscosity to SPH gives poor results [9]. A better representation 
of one-dimensional shocks is obtained by treating the particles 
as molecules and defining a viscosity that is modelled after 
molecular interactions [8]. Needless to say, the addition of such 
a viscosity term in the discrete equations does not translate into 
parabolic terms (like the von Neumann Richtmeyer viscosity) 
when we make the transcription back again from the discrete 
equations to the original partial differential equations. In multi- 
dimensions even this formulation breaks down since it was 
shown in [2] that it generates a substantial amount of entropy 
in regions of strong shear even when there is no compression. 
A way of stopping the spurious entropy generation while re- 
taining the good one-dimensional shock capturing was found 
in [2], where the form for the viscosity term 

I~ab 
hvoh • x,b 

(c,, + Cb)(X~b + rf)  • a )  + f (b ) ) ,  

= 0 ,  

if Yah" X~b < 0, 

otherwise, 
(4) 

was suggested, where 

I(v-v)ol 
f ( a )  - I(V. v)~l + l( v x V)a[ + O.O001cJh '  

wheref(a) andf(b) are form functions defined as each particle 
and carry information about the local flow around that particle. 
In particular, the form function is a suitably devised function 
of the local compression and the local vorticity. It is designed 
to approach unity in regions of strong compression and zero 
in regions of strong vorticity. Here Ca is the local sound speed 
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at particle " a " ;  x,h = x~, - x,, and v,,~, = oh - b, are the relative 
position and velocity, respectively, between particles " a "  and 
" b " ;  (V. v), and (V × v), are the divergence and curl, respec- 
tively, of the velocity field defined at particle " a . "  Equation 
(4) is just a simple, logical extension of the molecular viscosity 
in [8]. The author believes that this is but a modest solution 
since important physical problems involving interactions of 
shocks with shear layers may prove intractable even with this 
formulation. However, since the present analysis is in one di- 
mension there is no vorticity in the problem and Eq. (4) reduces 
to the one in [8] which is the best available for SPH. We, 
therefore, use it in our stability analysis. Since the derivation 
of the SPH equations of motion required a kernel averaging of 
the actual Euler equations in nonconservation form, the final 
forms obtained in Eqs. (2) and (3) are dependent on the order 
in which the integrals are evaluated in the averaging process. 
Thus the forms of the right-hand sides of Eqs. (2) and (3) are 
nonunique and other forms for the SPH time evolution equations 
are possible. The reader is referred to [ 11] for other forms, but 
we accept the forms given above as a starting point for this 
work. They are also most often used in SPH implementations 
owing to the greater symmetry of the terms for the particle 
" a "  that is being updated and all the particles " b "  that it is 
interacting with. The analysis of alternative forms for represent- 
ing the source terms can be done in a way that is completely 
analogous to the method demonstrated in this paper. 

1 , (.,.) 
W ( x ; h ) = ~ f f ' ( x ; h ) = ~ '  ~ . (5) 

Here a generic W will stand for M,,, W,,, G. or S kernels defined 
below. The values we will be interested in are fourier transforms 
of the normalized kernels of the form 

l~(k; h ) ~  f ~  ff'(x; h)e i~-' dx (6) 

and in the usual way we have 

f~ O" &~,---q ff'(x; h)e i~' dx = (- ik)"~V(k;  h). (7) 

The explicit x-space representation can be obtained trivially by 
taking the inverse Fourier transform of Eq. (6). 

The Gaussian and super-Gaussian kernels denoted by G(x; 
h) and S(x; h), respectively, have often been used in SPH. They 
have interesting mathematical properties but are rarely used in 
practice because of their infinite extent. The Gaussian and su- 
per-Gaussian interpolants are given by 

e --&':" S(x; h) 1 e_&h: C(x; h) ~ , --- ~ - (8) 

II. b. hTterpolation Kernels in S P H  

Equations (1), (2), and (3) have been stated without any 
consideration of their order of accuracy. We now address this 
important issue. It turns out that we cannot give a wholly 
conclusive answer to that question. The reason is that accuracy 
estimates for interpolation formulae can only be arrived at when 
the points one is interpolating between are uniformly spaced. 
In SPH the particles move and an initial set of uniformly spaced 
particles may soon become randomly spaced. This makes gen- 
eral accuracy estimates impossible and reliable convergence 
testing impossible for general multidimensional problems. (An 
extreme viewpoint may then be that SPH can then only con- 
verge with the convergence rate of a Poisson process. The 
number of particles within the kernel's support then provide 
the large number statistics. This is an extremely slow conver- 
gence rate.) However, we can relate the question of accuracy 
of the SPH scheme when all the particles are equidistant to the 
order of accuracy of kernel interpolation. In [ 10] an effort was 
made to understand the order of accuracy of kernel interpola- 
tion. There are a variety of interpolation kernels that are popu- 
larly used in SPH. We catalog one-dimensional forms of several 
popular interpolation kernels below. Here x is the interparticle 
distance and h is a characteristic length, called a smoothing 
length, over which the kernel has substantial support. 

For the one-dimensional kemels we normalize the kernels 
with the smooth length as 

and their Fourier transforms are given by 

O(k; h) = heh,k,_/4; ~(k; h) = heh:k214 (1 + h ~ ) .  (9) 

Most practical work relies on the use of a family of splines 
known as monotone splines (not the same as monotonicity 
in finite difference methods) and denoted by M,,(x; h). Their 
interpolation and smoothing properties have been thoroughly 
studied in [15]. The lower members have rather small support, 
i.e., a small integral or half-integral multiple of h. For example, 
M4 has a support of 2 h, Ms has a support of 2.5 h, and M6 has 
a support of 3 h. Note that the support can still range over a 
large number of particles since the ratio of h to the interparticle 
distance Ax can be rather large. The M4(x; h), Ms(x; h), and 
M6(x; h) are the three most popularly used ones. All monotone 
splines make a positive definite interpolation of positive definite 
data. Hence, their obvious use in evaluating the density variable 
in Eq. (1). The Fourier space representation of the monotone 
splines is given by: 

I ~.(k;h)--fs ~,,(x;h)e'~ax=h 2sin kh . (10) 

The monotone splines only interpolate uniformly spaced data 
points with second-order accuracy. By applying Richardson 
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extrapolation to the M,,(x; h) family of splines a new family of 
splines, denoted by W,,(x; h), was derived in [10]. The individual 
members in this family of splines have the same interpolation 
support as the corresponding monotone splines. However, they 
do not have the positive definite interpolation property. This 
limits their usefulness in SPH although they may be selectively 
used in regions of the flow where all the quantities vary gradu- 
ally. Their key advantage is that W,,(x; h) with n > 4 provide 
fourth-order accurate interpolation of uniformly spaced data, 

s [ l,~,,(k; h) - ~L~ =- -~ W . ( x ; h ) e  d x = h  2sin kh 

( l l l  

[ ( l + 2 ) ( 2 s i n ( - ~ ) / k h ) - 2 c ° s ( ~ f f )  ]" 

The coefficients for M4, Ms, Mr, W4, Ws, and Wo for use 
in two and three-dimensional problems have been explicitly 
tabulated in [2]. 

II. c. Some Comparisons  o f  the S P H  Method  with Finite 

Di f ference Methods  

To clearly lay down points that readers familiar with high 
quality finite difference methods might have guessed by now: 
(1) SPH does not have local conservation which is available 
in finite difference methods by discretizing the equations in 
flux form. The time evolution equations are not derived from 
the conserved forms of the Euler equations but rather from an 
averaged version of the Euler equations in nonconservative 
form. (2) It does have global conservation (proof given in [ 1 1 ]). 
(3) Stability and accuracy restrict the form of the time update 
in finite difference calculations. Accuracy considerations have 
been used in constructing SPH time-integration schemes. How- 
ever, prior to the present paper, stability considerations do not 
seem to have been used in designing SPH time update strategies. 
(4) The method relies on an artificial viscosity formulation for 
shock capturing. (5) The shock capturing is not of the familiar 
scalar or tensor viscosity type. The SPH equations, therefore, 
do not reduce to the parabolized form of the Euler equations. 
For the parabolized form of the artificial viscosity, we are 
guaranteed that the smallest wavelengths in the system will 
dissipate most efficiently because of the very structure of the 
W operator. That is not guaranteed for the SPH viscosity terms. 
(6) There is no TVD property in the SPH formulation. (7) No 
discrete entropy functional and E-fluxes, in the sense of [ 1 3], 
have so far been constructed, so the proof of entropy enforce- 
ment does not exist. (8) The order of interpolation can only 
be guaranteed when the particles are equidistant. The initial 
configuration in an SPH simulation may indeed be set up to 
have this property. However, once the particles have moved to 
a new set of random positions in an SPH simulation, the order 
property does not obtain. (9) The requirement of positive defi- 
nite interpolation restricts SPH to no better than second order 

in space and that is achieved only when the particles are equi- 
distant. 

II. d. Stability Analys is  

Because of the Lagrangian nature of the equations of motion, 
doing a stability analysis around an unperturbed state with 
constant velocity is equivalent to doing a stability analysis 
around an unperturbed state with zero velocity and then 
applying a translation to the modes. Thus we take a state with 
zero velocity as our unperturbed state. This gives us the expres- 
sions for the unperturbed states plus the linear perturbations 
with wavenumber k, 

x,, = a A r  + q(t)e ik'±~, v,, = v( t )e  ik~a', p,, = t90 + r ( t ) #  kua', 
(12) 

P,, = Po + P( t )#  *'~', 7",, = To + t(t)e i~'±', 

and we impose the usual assumptions about ideal polytrop~c 
gas law (in this work we have taken y = ~throughout) 

P P 
- = R T ,  u -  - -  (13) 
p p(~/-  1) 

For the rest of this paper we will also make the normalizations 

m 
po = - - ~ ,  Co = yRTo ,  k = k &r, 

h ~ Co At  v(t)  
~ = ~ ,  ~xt-  zx x ,  ~(t)= , 

C0 

t(t) q(t) v( t l  - &tO(t) 
r(tl = --~o' ~( t l  - 6 x '  c~ ' 

u(t) = ~ / (~ / -  1) ~¢  h ( t ) .  

cg 

(14) 

Putting the expressions for xu and G into Eq. (1) above and, 
linearizing around the unperturbed positions of particles " a "  
and "b , "  we get 

P,, = Po + r( t )e  i~A~ 

= ~ mhW((b  - al Ax l  (15/ 
b 

0 W &,c)(eikl~_,lA ~ + q(t)e ik"A~ ~ mb ~ x  ( x =  (b - a) - 1). 
b 

Thus we get an expression relating r(t) to q(t) as 

r(t) = -q( t )poikFv,(k;  h), (16) 

where Fo,(k; h) is a function of the wavenumber k and the 
smoothing length h. It is explicitly given by 
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F ~ , ( k ; h ) - ~ - -  - -  W v = sin(/Tb). (17) 
/7/72 ~,=~ 0v 

At this point it helps to point out an important and useful 
approximation that is often made in the spatial part of von 
Neumann stability analyses. Notice that Eq. (17) entails a sum- 
mation over the spatial variable " b . "  We, therefore, call it a 
"discrete in space" form of the equation. For kernels with 
finite support this summation will be a finite sum. The "discrete 
in space" forms have no limiting approximations built into 
them. Many of the summands in this work are most easily 
evaluated and even obtained in closed form if we make the 
"continuous in space"  approximation where 

with the SPH artificial viscosity included show the same strong 
damping of the smallest wave modes that is guaranteed by the 
parabolized form of the finite difference equations. It must also 
be noted that only the linear artificial viscosity term contributes 
to the linear stability analysis. Thus, without making any adia- 
batic approximations for the pressure we have to linearize 
around the pressure terms and around the particle positions in 
Eq, (2). We do this to get 

2 R T ,  och 
O(t") - - -  F,.,(k; h ) v ( t " )  

C o A~( 2 

- RTok' -F, .qq( t")  

- RikF~,,(k; h ) t ( t " ) .  

(2O) 

&x --~ dr. (18) The linearization of the energy equation (3) now gives 

The error in making this transcription can be explicitly evalu- 
ated using the Poisson summation formula and the process for 
doing that is given in [10]. The approximation is accurate when 
the wavelength is substantially larger than the smoothing length. 
Numerical comparisons with the "discrete in space" forms 
done in the next section will show the "continuous in space"  
approximation to be rather good, even when the wavelength is 
comparable to the smoothing length. On making that approxi- 
mation one has 

h( t " )  = - T ,  RikF~.,(k; h ) v ( t " ) .  

For the "continuous in space" analysis one has 

(21) 

2W(k; h) W(k: h)'- 
- -  - - -  ( 2 2 )  F,.,l(k; 17) = h h'- 

k 0  1 
F~,~(k; h) --- ~ ~ l~(k; h) + ~ ~'(k; h) - 1. (23) 

l,~'(k; h) 
Fv,(k;  h )  - - -  (19) 

h 

For the "discrete in space" analysis, because we cannot flip 
derivatives, we have one auxiliary definition, 

Having thus explained the method for doing the spatial part 
of  the von Neumann analysis for one SPH equation, we give 
the expressions for the others. It must be noted that Eq. 
(4) cannot be accurately linearized because the " swi tch"  v,,j,. 
x,,b < 0 introduces a fundamental nonlinearity in the equations. 
In such a case one has two options. The first is to linearize 
around a time-steady unperturbed flow that has an overall com- 
pressive or expansive character to see the effect of  this term 
in either situation. Nozzle flow in engineering or accretion flow 
in astrophysics could serve as good examples of  such flows. 
We do not do that there since it is equivalent to doing the 
stability analysis with one or another specified value of the 
viscosity term, with the entire viscosity term becoming indepen- 
dent of  the wavenumber.  We find this option unsatisfying. The 
other option, which we do adopt here, is to linearize without 
the use of  the " swi t ch"  and then to require three things of  the 
analysis. First, it must give behavior at long wavelengths that 
is not too different from the equations without shock terms. 
Second, at shorter wavelengths it should give no unphysical 
sound speeds. Third, since the viscosity terms are unique, the 
parts of  the viscosity terms that contribute to the linear stability 
analysis should give no unphysical growing modes at any wave- 
length. In fact, it would be nice to require that the SPH equations 

- - - 1  ~ O~_ff, v =  (cos(~:b)-  1), (24) FL, r(k; h )  =-- ~,.~3 ~ . . . .  Ov ~ 

and so in the "discrete in space" case we have 

F~,q(~:; h) -= 2F~,A~:; h) - F~,,(~:; ]~)2 (25) 

F~,,(k; h) ~ - 17V v = (cos(~:b) - 1)(b). (26) 

II. e. S p a t i a l  F i l t e r i n g  

The position update in SPH is usually done as 

d t  v,, up, (27) 

where it has become clear (see [12, 2]), that the update velocity 
vo up should be of a form so as to minimize the buildup of 
small-scale noise in numerical simulations. A simple spatial 
filter of the form 
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Eo mhVb W,~ ) 
Va = Va + ~ . . . . .  Va 

up \ ~b  mb W.*b 
(28) 

has been proposed in [2]. Alternatively, we can make a slight 
modification of the XSPH formalism in [12] to get 

( ~  2mb (vb-v.)W~) vo up = vo + e (p,, + m---~ (29) 

Here e is a small number between 0 and 1, but preferably kept 
as close to 0 as possible. The original choice in [12] was to 
set e = 1. The kernel in Eqs. (28) and (29) may be different 
from that used in the dynamics, i.e., Eqs. (1) to (4). The simple 
XSPH update given by Eq. (2.6) of [12] is likely to filter too 
much as will be demonstrated later. The form given in Eq. 
(29) is to be preferred because it has better conservation 
properties. Both forms reduce in the linear limit to the same 
form given by 

v,, up = Vo + v(t)(1 - e + eF*(k; h))e ik~'s~. (30) 

The asterisk in F*(k; h) denotes that it is evaluated using the 
kernel W* which may be different from the kernel W used in 
Eqs. (1) to (4) to evaluate the dynamics. 

It is from the above equation that one begins to see why e 
should be kept as small as possible. With e = 1, as one would 
have in the straight XSPH formulation, all wavenumbers would 
be modified substantially while our purpose is to modify the 
propagation as little as possible. This we do by keeping e as 
small as one possibly can without building up small scale noise 
in a given problem. The formulation of some form of nonlinear 
update that preferentially filters on the smallest scales would 
be of great value in a situation of this type but it doesn't seem 
to have been attempted in the literature. In the next section we 
shall analyze this term further. 

At this time it helps to recapitulate for the reader the steps 
that have gone before. Thus we take a set of particles of mass 
m and center them at equidistant positions with interparticle 
distance At. This gives the particles a mean unperturbed density 
Po = m/Ax. The unperturbed particles all carry a temperature 
To, a pressure P0, and an initial sound speed co, where c~ = 
TRTo. The particles are set into oscillation using Eq. (12). Thus 
the problem reduces to finding the time evolution of the five 
oscillation amplitudes q(t), v(t), r(t), p(t), and t(t). The equation 
of state (13) provides one constraint relating r(t), p(t), and t(t). 
The equation for the density (1) provides another constraint 
relating r(t) to q(t) in Eq. (16). The remaining evolution of the 
system is determined by the three equations of evolution, (2), 
(3), and (27). Thus there are three quantities whose time evolu- 
tion needs to be written down as a function of their initial 
values. In this work we take them to be v(t), q(t), and u(t). 

Because the perturbations introduced in Eq. (12) are oscilla- 
tory, one needs the representation of the interpolation kernels 
in Fourier (i.e., wavenumber) space. This is provided in Subsec- 
tion ll.b. The particles are located at discrete positions. The 
Fourier space representation developed in Subsection II.b is 
strictly valid only in the "continuous in space" approximation, 
i.e., when the wavelength of the perturbation is much larger 
than the interparticle spacing. The "continuous in space" ap- 
proximation is analytically very convenient and in practice it 
has been seen to give reasonably good answers even beyond 
the strict domain of its applicability. Thus in Subsection II.d 
we distinguish between the "continuous in space" approxima- 
tion and the "discrete in space" formulation. The "discrete in 
space" formulation is exact in all cases and is developed in 
Subsection ll.d. The equations are normalized using Ax as a 
unit of length and AX/Co as a unit of time. The normalized 
quantities are denoted with a tilde on top to distinguish them 
from unnormalized quantities. The full normalization of all the 
quantities is given in Eq. (14). 

After imposing the normalizations given in Eq. (14) we get 
a general matrix equation giving the time rate of update in 
terms of the field variables at that point. 

I __i 2 _ - 
~(t") ~ 2c~hy Fus(~:; h) - - y  Foq(k; h) 

-i(y - 1)kFv,(k; h) 0 

-ikFo,(k;h)){O(t")~ 

Y 0 I?t(t")l 
o \r,(t")/ 

(31) 

where F*(k, h, e) is given by 

F*(k, h, e) -- 1 - e + eF*(k; h). (32) 

The above equation holds, irrespective of the time-stepping 
scheme, and can be used to understand the "continuous in 

t ime" behavior of SPH. It can also be used to understand the 
effects of various time-discretizations. Thus we now turn our 
attention to different schemes for updating the equations in 
time. It might be noted that Eq. (31) can be used as is to show 
why the backward Euler update is unstable. We do not do it 
here because backward Euler has only first-order accuracy in 
time and is never used in practice. 
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II. f. Time Discr.et&ion 

We now outline the predictor-corrector scheme. It is second- 
order accurate in time. The predictor-corrector scheme is de- 
rived by realizing that values at t” + l/2 are intermediate values 
(superscript 7). Thus we predict with 

and correct with 

1 
xi:+’ = x: + -(u;:; + u::,,) At 

2 
(34) 

The method as written in the above two equations is a one- 
level scheme if and only if the two force and energy updates 
on the right-hand sides of (33) and (34) at times II and II + fr 
are carried out explicitly. The von Neumann stability analysis 
for that case can be rather easily done and will not be spelled 
out in detail here. The double evaluation of the force and energy 
update terms increase the computational cost by a factor of 2 
and is usually avoided. Thus, as suggested in [l], one does 
only one force and energy update at time n + & obtaining 
the forces and energy update terms at time n + 1 by simple 
extrapolation as follows: 

v,, u . nil = ~!!+I/? 

hi’1 = ;;*m. (35) 

This now yields a scheme that is not a one-level scheme. The 
von Neumann stability analysis for this important, stable, and 
useful case is not easy to work out and has been done for the 
reader in some detail in Appendix A. It turns out that the 
analysis cannot be done, except by using two of the intermediate 
values and this yields two computational modes. This is typical 
of time evolution schemes which are higher than first order in 
time; i.e., they usually (although not always as the example of 
the predictor-corrector with two updates above shows) intro- 
duce computational modes in the scheme and one then has to 
be very careful to ensure that the computational modes are 
rapidly damped out. 

The other popular update scheme is the leapfrog scheme for 
which we have the following update equations: 

SMOOTHEDPARTICLEHYDRODYNAMICS 

yPI/? = 
‘l I::-? + IJ::,, At 

ur!,+l12 = I, “” + $,-I,? t ,I ‘I 2 

At ll::+l/? = ll:;-ll? + (&;‘I,? + &-I/?) _. 

2 

This scheme, too, introduces two additional computational 
modes. In the next section we will give the results of doing 
the von Neumann stability analysis for all the above-men- 
tioned schemes. 

III. RESULTS 

We now present the results of the analysis carried out in the 
previous section and in the Appendix. Most of the results will 
be drawn from an analysis of the predictor-corrector with two 
force evaluations per timestep. Although this is not how pre- 
dictor-corrector is usually used, in this form it yields a one- 
level system and one can cleanly see the results. Later in the 
section we do, however, discuss in detail the predictor- 
corrector with one force evaluation and the leapfrog methods. 

For the benefit of readers who haven’t followed the previous 
section or the Appendix closely, we provide here some essential 
background material. Thus, first realize that z, using the nor- 
malization spelled out in Eq. (15) is equivalent to the Courant 
number. Since most simulations are done at or around a Courant 
number of 0.5, we shall, unless otherwise stated, display the 
results for a Courant number of 0.5. h is the ratio of the smooth- 
ing length h to LYX the interparticle distance; ,% is the wavenumber 
multiplied by Ax the interparticle distance. It ranges from 0 for 
the longest wavelengths to n for the shortest wavelengths which 
are 2 hr in length. E is a parameter defined in Eq. (28) and 
(29) which determines the amount of spatial filtering; (Y is a 
coefficient of numerical viscosity. The von Neumann stability 
analysis boils down to finding a complex eigenvalue to an 
eigenvalue problem; see the end of Appendix A. The amplitude 
of this eigenvalue tells us how much dissipation there is in our 
system of equations. If it is unity, it implies that the system is 
essentially dissipationless; if it is greater than unity, it means 
that the system is unstable; and if it is less than unity, it means 
that there is some form of dissipation introduced in the system, 
either by the artificial viscosity or by the discretization. The 
ideal is to be as close to unity for as large a range of wavenum- 
bers as possible, as is consistent with the requirement of stabil- 
ity. The phase of this eigenvalue gives us information about 
the propagation speed of the linearized perturbations that we 
have imposed. The equations of fluid mechanics allow for 
modes to be propagating along C’ (u + c), C’(u), and C- 
(u - c) characteristics. Here u is the unperturbed fluid speed 
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FIG. 1. "'Discrete in space" amplitude for the Ms spline with Courant 
number of 0.5 and h = 1.4. 

which for our case is zero and c is the sound speed which in 
this linearized analysis is a constant. For the graphs that we 
show below we have normalized the propagation speeds with 
the unperturbed sound speed so that in the ideal limit there 
should be three modes propagating with phases + 1, 0, and - 1. 
The deviations from the above-stated phases then is a measure 
of dispersion; i.e., in a real fluid code the propagation takes 
place at different speeds for different wavenumbers. 

III. a. Choice of ~l and Choice of Interpolation Kernel 

We now address ourselves to the very important issues of  
what ratio of  smoothing length to interparticle distance should 
be maintained for the particles and which interpolation kernels 
are optimal. In this part we do not concern ourselves with the 
shock terms or the role of  spatial filtering. Thus the coefficients 
for those terms will be set to zero. We do the present analysis 
for the predictor-corrector scheme with two force and energy 
update evaluations per timestep, Eq. (33) and (34). 

We show in Figs. 1 and 2 the "discrete in space" amplitude 
and phase for an Ms kernel with h = 1.4. The abscissa in these 
plots is the normalized wave number t: and the ordinates are 
amplitudes and phases of  the complex eigenvalues. Notice from 
the amplitude that it remains unity for all wavenumbers bringing 
out the very felicitous aspect of  the second-order accurate in 
time update schemes used in SPH. Thus the temporal update 
is indeed dissipationless for all wavenumbers. Although dissi- 
pationless, notice that the phases for the C + and C -  modes 
deviate markedly from + 1 and - 1  and, thus, the scheme is 
not dispersionless. However, for the C O mode it is exactly 0, 
showing that advection is indeed dispersionless. Also notice 
that it is the short wavelengths that deviate the most from 
the ideal. However, as is traditional practice, we only interest 

ourselves in the wavenumbers between 0 and it/2 since the 
higher wavenumbers will be substantially modified by the shock 
and the spatial averaging terms. For all other values of  h, too, 
we would find that without artificial viscosity the modes would 
be dissipationless. Hence we omit the graphs demonstrating so. 

In Fig. 2 we show the phases for h = 1.0 and h = 1.2, again 
for the M5 spline, and observe that the results actually seem to 
improve with decreasing h. The amplitudes are exactly as in 
Fig. 1 and are not shown. Since the computational cost of  a 
SPH scheme depends on how many particles are interpolated 
over and that it decreases with decreasing h, we might even 
be tempted to think that decreasing h even further might bring 
further benefit. That is not true as Fig. 2 for h = 0.65 shows. 
Here we notice that the very essential property that we require, 
i.e., that at small wavenumbers the phases tend to + 1 and - l, 
is not met. This means that an SPH code run with ,~ = 0.65 
will not even propagate sound waves accurately in the long 
wavelength limit! This value of,~ = 0.65 is of  especially great 
interest because it is the recommended value for the TREESPH 
code described in [6]. The choice of  h = 0.65 is just what one 
obtains if in three dimensions one requires about 32 neighboring 
particles (the suggested value in TREESPH and several other 
SPH codes) to be interpolated over at each particle position. 
For the multidimensional case the implication is that one must 
have at least 6 to 7 particles in each direction to interpolate over. 

If too small a smoothing length is bad, then too large a 
smoothing length is bad too. Thus, see Fig. 2 which shows the 
phases for h = 2.0 for the M5 spline. Here the dispersion is 

1 . 6 t ~  ' ' I , I ~ I ~ I ~ I ~ I ~ I t I ~ I ~ I ~ I ~ I ~ I , I ~ 

F . . . . . . . . . . . . . . . . . . . . . . . . . .  
1.2 V - " ' ' ~ " " ' ~ " - - ~  

r .  C + h=l.O, M 5 ~ - 
~--"-"~',~,~-,.'~-'~:.. , /  h=1 2 M 5 - 

o ~ t  ~'-"~ ~ ....... /~  / _  ' "'\ "~'~.'~ " ........ , /  h = l  4 M s 
- >.. -.-:.-..# ....... . /  ..... - 

- 1 l  \ . .  -.. "'-...... / .... 
0.4 - ~:2.6, M s ~ . .  " - , ,L~ . . . . _ . . ~ .  

03 " " ' , , . . .  o 0 ..~t,, 
~_ - C 0 ..,.--'-" _ 

-0 .4  - I "  .,...,-~'.~.~.-~'" - 

Z . i  , ' (3""  . ........... Z 
/ / ~ , , ~  • . ° . . o -  

• ° ~ . ~ "  . . . -  
- / ¢ . : f _ . ~  . . . . . . .  - 

- o 8  - . . " ~ i : ' . . " -  . . . . . . . . . . .  
~ . ~ . . , ~ . .  . . . . . . .  

C -  
• - - "  - "  1.2 .,.,,- ~ 

-1.6 l l l l l l l ' l ' l ' l ' l ' l ' l ' l ' l ' l ' l ' l  
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 
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quite substantial and we might deem that unacceptable. Thus 
from the above graphs we conclude that keeping h somewhere 
between 1.0 and 1.4 interparticle distances is the right range 
when the M5 spline is used. Using values of  h much smaller 
than that or much larger than that is unacceptable. This also 
allows us to deduce certain general and extremely important 
properties that an interpolating kernel should have in order to 
be a good kernel for SPH work. First, it should keep the phase 
reasonably constant over as wide a range of small wavenumbers 
as possible. Second, it should allow for a reasonable latitude 
of h values over which the first property holds. Third, and this 
is more of a practical constraint, it should have as small a 
domain of support consistent with the first two properties. This 
third property has to do with computational efficiency. The 
use of the Gaussian and super-Gaussian kernels in practical 
calculations is ruled out as a consequence of the third property. 
This was proved by applying the analysis presented here to the 
Gaussian and super-Gaussian kernels. Hence we will not ex- 
plore their properties further here. For the sake of completeness 
although these kernels have been tabulated in Subsection ll.b. 

Next we explore the use of the M4 spline. Figure 3 shows 
the phases for h = 0.8, h = 1.4, and h = 1.6 for the M4 
spline. Notice two things. First, the deterioration of good long 
wavelength behavior is present even at h = 1.4 and that the 
falloff in the phases for long wavelengths even at ,~ = 1.6 is 
somewhat more rapid than it was in the case of  the acceptable 
range of h for the M5 spline. The deeper reason for that is that 
while both M4 and M5 are second-order accurate, M5 has better 
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smoothing properties. For a discussion of smoothing see [15]. 
Second, at h = 0.8, which in three dimensions would correspond 
to having about 35 particles under the interpolation kernel, the 
M~ spline still gives the unfortunate behavior we observed for 
the M5 spline when the smoothing length is made too small. 

There is no essential problem with using splines like M6 etc., 
which have even smoother properties, and carrying out the von 
Neumann analysis for those cases. It just turns out that, because 
M6 has a larger domain of support, its use becomes more compu- 
tationally expensive. 

Now we explore the W5 spline worked out by [10]. This is 
not a positive definite spline, but it still has some very good 
behavior in those situations where it can be used (not all prob- 
lems have such steep density gradients as to make a spline that 
does not have the positive-definite property unusable). The 
reason for its excellence can be made manifest in Fig. 4 which 
is a "continuous in space" result. Notice there that the phases 
remain almost flat for an extremely wide range of small wave- 
numbers. Thus one sees that this von Neumann stability analysis 
does not just tell us what is good and bad, but it also guides 
the direction of future effort. Here we realize that construction 
of splines which have more of the Ws-like character, i.e., third 
moment preserving, but which are, unlike Ws, positive-definite, 
would be a very valuable thing. Another valuable suggestion 
that comes out of  this analysis is that in regions of smooth flow 
one should use the W5 spline and have some way of smoothly 
switching from W5 to M5 as the flow gets more discontinuous. 
In finite difference schemes, great benefits have been derived 
from having local "steepeners" and "flatteners" to locally 
modify the order of representation of the fluid flow and the 
present analysis indicates very clearly that SPH would benefit 
in a similar way. In the next paragraph we take up the issue 
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of accuracy. In the paragraph following it we take up the issue 
of  efficiency. 

The analysis presented above shows us clearly that there is 
only a limited range in h, the ratio of  smoothing length to 
interparticle distance, for which SPH gives acceptable propaga- 
tion of  sonic disturbances. This is true for all the popular kernels 
used in SPH. Thus none of  the SPH kernels has the second 
important property that we required of  SPH kernels in one of  
the preceding paragraphs in this subsection. We also see quite 
clearly that a change in this ratio causes a change in the propaga- 
tion speeds. This is where SPH runs into a fundamental diffi- 
culty which we explain as follows. Because of  the lagrangian 
nature of  SPH a high density region will be represented as a 
local condensation of particles and a low density region as a 
local thinning out of particles. Thus if we keep the smoothing 
length fixed for all the particles, the propagation of  a sound 
wave will change dramatically as it passes from a dense region 
to a rarefied region adjoining it. This is because the ratio of  
smoothing length to interparticle distance changes as the wave 
propagates across the two regions. This change in propagation 
is a purely numerical attribute. It should not happen in a good 
numerical scheme but it does in SPH. An alternative would be 
to change the local values of  the smoothing length [6]. But this 
is problematic especially at strong shocks. The shocks in [6] 
are poorer in quality than those obtained with SPH using a 
constant smoothing length. Moreover, the shocks in [6] are 
substantially worse than those obtainable using a second-order 
accurate high-resolution finite difference method [3]. Such a 
comparison has been made in [2]. 

While the above paragraph dealt with accuracy, there is also 
the question of  efficiency that needs to be dealt with. For the 
M5 spline, which has an extent of  2.5 smoothing lengths, h = 
1.4 corresponds to having about seven particles to interpolate 
over in one dimension. Thus for two-dimensional and three- 
dimensional calculations one needs about 49 and 343 particles, 
respectively. The use of spherical kernels may reduce these 
numbers a bit. Regardless of  that, this is a lot of  particles to 
be interpolating over. In the language of  finite difference meth- 
ods it means that we need about 49 and 343 zones in two and 
three dimensions, respectively, to achieve second-order ac- 
curacy ! 

III. b. The Issue of Resolution in SPH Simulations 

At this point we also need to resolve the issue of  resolution 
in SPH. In almost any method, one has to have a good estimate 
of  what range of wavenumbers are accurately represented. The 
rigorous mathematical statement of  that fact is that all the modes 
that the scheme claims to resolve have to be propagated with 
speeds that are within some fraction of  their theoretical propaga- 
tion speed. Say we choose to require that all modes for which 
we can claim that our SPH scheme is doing a good job are 
propagated within 10% of the theoretical propagation speed 
then, if we are using the Ms spline; we mark out a phase of  
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the W~ spline. 

0.9 (or - 0 . 9  for the backward propagating sound mode) on 
the h = 1.4 plot in Fig. 2 and ask which wavenumbers are 
propagated with phases of  0.9 or greater. On doing this we see 
that this happens at a normalized wavenumber of  about 0.9 
which corresponds to about 7 A~:. Thus only waves with wave- 
length longer than seven interparticle spacings are propagated 
with better than 10% accuracy. This is usually the kind of  
resolution one obtains in finite difference schemes too. Thus 
from a fluid dynamical point of  view it is wrong to claim that 
SPH offers resolution down to two interparticle spacings. One 
must, however, note that the advection mode is accurately 
propagated for all wavenumbers so that SPH does offer that 
one advantage. 

III. c. Discrete versus Continuous in Space Approximations 

Since the "continuous in space" approximation might be 
easier to implement on a computer, we briefly display an exam- 
ple to show that it indeed works very well. Thus Fig. 4 shows 
the phases for h = 1.4 for the M5 spline. Comparing that to 
the "discrete in space" phases for h -- 1.4 in Fig. 2 one notices 
that the differences are very small indeed. 

III. d. The Effect of Spatial Averaging 

Figure 5 gives the phase information, still with no artificial 
viscosity, but with e = 0.1, 0.5, and 1.0 filtering done with the 
W5 spline. Figure 6 shows the amplitudes for e = 1.0 filtering 
done with the Ws spline. The dynamics is done with the M5 
spline. The amplitudes for the other two cases with e = 0.1 
and 0.5 are exactly like Fig. 6. For the purposes of  this analytical 
work we are not constrained to do a positive-definite interpola- 
tion and so we use the W5 spline which as seen from the 
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discussion above and, also in the references cited there, has 
better ability to represent a larger range of  Fourier modes. From 
the amplitudes we see that the spatial averaging terms (without 
the shock terms) are indeed as was deduced, even in [12] for 
the long wavelength limit, truly nondissipative. Here we verify 
that that is indeed so for all wavelengths. They do, however, 
change the propagation speed as seen from Fig. 5. We can see 
from Figs. 2 and 5 that the spatial averaging with e = 0.1 is 
only mildly dispersive, even e = 0.5 is not so strongly dispersive 
but that e = 1.0 is indeed strongly dispersive, especially in the 
short wavelength limit. This gives us our first intimation that 
a lot of spatial averaging may not be a particularly good thing. 
This would be especially true if the spatial averaging terms 
couple with the shock terms. For the case that we have explicitly 
calculated in Appendix A we can explicitly verify (third term 
in Eq. (A.7)) that that is indeed so. We shall see, however, that 
in all cases an e of  0.1 or less produces no deleterious behavior 
and for a rather general class of  problems, it was found in [2] 
that e < 0.1 for the spatial averaging is more than adequate. 

Ill. e. The Role of  Shock Terms 

In Figs. 7 and 8 we show the amplitude and phases respec- 
tively for oe = 0.5 and oe = 0.8. The M5 spline was used to 
represent the dynamics. No spatial averaging was done. We 
can see from the amplitudes that the shock terms are indeed 
dissipative. The entropy wave remains undamped. Also notice 
that we should have expected that the dissipation increases with 
wavenumber. The amplitudes in Fig. 7 show that this is indeed 
the case. However, one does not see as great a dissipation at 
the largest wavenumbers as one would have expected. The 
reason for that is the approximation we made in Section 1, 
where the "swi tch"  in Eq. (4) was omitted in the analysis. 

The result of this is that, at wavelengths comparable to the 
value of  h, the shock terms yield an average measure, tempered 
by the kernel, of  the local dissipation. Thus our assumption 
leads us to underrepresent the local dissipation at the smallest 
scales. This explains why the amplitudes seem to flatten out 
in Fig. 7. The graphs for the phases in Fig. 8 also show that 
the propagation speeds are slowed down which is as we might 
expect. We see that the shock terms in Eq. (4) do give us 
propagation on the largest wavelengths, With no filtering in- 
cluded we get no unphysical sound speeds and no unphysical 
growing modes at any wavelengths. Thus all the requirements 
made of the shock terms in Section II are met. 
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III. f. Interplay between Shock Terms and Spatial Averaging 
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in Eq.  ( A . 7 )  to e x p l i c i t l y  v e r i f y  th i s .  It  t u r n s  o u t  t ha t  f o r  a n y  
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a n d  ~ = 0 .1 ,  e = 0 .5 ,  a n d  e = 1.0 f i l t e r i ng  d o n e  w i t h  t h e  W~ 

FIG. I1. "Discrete in space" amplitudes for the M~ spline with Courant 
number of 0.5, h = 1.2, ot = 0.8, (a) e = 0.1; (b) e = 0.2; filtering done with 
the W5 spline. 

spline. The M5 spline was used for the dynamics. Figures 11 
and 12 show amplitudes and phases respectively for o~ = 0.8 
and e = 0.1 and e = 0.2 filtering done with the W5 spline. 
One sees that for the smaller value of  o~ there is a fairly large 
range of s for which nothing unphysical happens. But for e = 
1.0, notice that the modes change character. The forward and 
backward propagating modes become completely nonpropagat- 
ing for a whole range of large wavenumbers. At that point one 
has to stop distinguishing them as C ÷ and C- waves. This is 
not a very good thing because it means that information transfer 
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along waves for small wavelengths will be completely wrong. 
The information along all three will then tend to move with 
just the fluid flow speed, a situation which is unphysical. Were 
these modes damped out rapidly, the situation might have been 
acceptable but Fig. 9 makes it very clear that as s, i.e., the 
filtering parameter, increases and, especially as it tends to unity, 
one of the modes tends to go undamped. At e = 1.0, it is totally 
undamped, i.e., its amplitude becomes unity. In a realistic code, 
one actually wants waves with ~: greater than zr/2 to be effi- 
ciently damped. Of course, in a realistic code the quadratic 
viscosity also contributes to the damping of small wavelengths 
and so some of the damping at the highest wavenumbers will 
also be provided by the quadratic viscosity. The quadratic vis- 
cosity cannot be treated in a linear formalism. However, we 
see that there is a need to treat the filtering terms with caution 
and at all times to use only the minimum needed to ensure 
smooth flow. In that regard the comment we made about ~ in 
Section II becomes especially relevant; e could be made a 
function of the local attributes of the flow and the position 
update would, as a consequence, become nonlinear. Figures 11 
and 12 show that as a is made larger this deleterious property 
of the modes sets in at smaller values of s. Thus, ~ must always 
be held to the minimum needed in every problem. 

III. g. Other Timestepping Schemes 

In the above several paragraphs we addressed several issues 
using the predictor-corrector scheme with two force evalua- 
tions per timestep. This yields a one-level system and all the 
modes are physical modes. We saw that we obtained three such 
physical modes corresponding to the three characteristics along 
which information is carried in one-dimensional flow. Now we 
consider very briefly the other second-order accurate timestep- 
ping variants, the predictor-corrector with one force evaluation 
per timestep and the leapfrog schemes. Both these result in a 
5 × 5 matrix whose eigenvalues give us five growth factors. 
For the predictor-corrector with one force update, we have 
given the derivation in Appendix A. As one might expect, one 
gets two surplus eigenvalues and these are the computational 
modes that these schemes have. The computational modes 
should always remain sufficiently small. This is guaranteed 
if they have sufficiently small growth rates for all possible 
wavenumbers. Since we have already established in the pre- 
ceeding paragraphs that certain restrictions and guidelines have 
to be followed in the choice of h, or, and s, we only demonstrate 
that use of those guidelines results in nice well-behaved behav- 
ior for both the predictor-corrector with one force evaluation 
per timestep and the leapfrog schemes. We have also demon- 
strated that the "continuous in space" approximation is good 
enough and so we use it here. In Figures 13 and 14 we show the 
amplitudes and phases for the predictor-corrector and leapfrog 
schemes, respectively. Notice that the computational modes, 
while moving quite fast (in fact, much faster than the real 
modes) are indeed very rapidly damped out at all wavelengths. 
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This is as we wanted. Also notice that the propagation of the 
physical modes in these two schemes is almost as good as the 
predictor-corrector with two force evaluations that we have 
previously discussed in such great detail. 

IV. CONCLUSIONS 

We have shown that only a small range of ratios of smoothing 
length to interparticle distance for a specified choice of spline 
lead to optimal continuum behavior. Based on that finding we 
deduce that none of the currently used SPH kernels represents 
a particularly good choice. We have shown that the M5 spline 
is a better choice than the M4. For the M5 spline we have shown 
that the ratio of smoothing length to interparticle distance should 
lie between 1.0 and 1.4. When this ratio falls below 1.0 the 
asymptotic behavior for long wavelengths is physically incor- 
rect. This is commonly taken to be unacceptable behavior in 
a hydrodynamics algorithm. When this ratio exceeds 1.4 a 
large range of medium wavelengths have unacceptably large 
dispersion. Maintaining the ratio between the smoothing length 
to the interparticle spacing within the acceptable range requires 
us to have about seven particles to interpolate over in each 
dimension. In two and three dimensions the number of particles 
that one needs to interpolate over to achieve the fluid's contin- 
uum behavior with second-order accuracy is truly large indeed! 
We have also been able to quantify the very important issue 
of resolution in SPH. We see that just as finite difference 
schemes do not have a true resolving power of two zones, SPH, 
too, does not have a true resolving power of two times an 
interparticle distance. In fact, the resolution of sound waves 
that SPH offers is definitely not better than high rersolution 
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second-order finite difference schemes, e.g., [3]. We then verify 
that the spatial filtering, used all by itself, does not have any 
dissipative properties although it does introduce dispersion. We 
have then shown that when used with the shock terms, the 
spatial filtering, in its extreme form, does produce unphysical 
propagation of the forward and backward propagating sound 
waves in this linear analysis. We see that this is not a serious 
problem since in most cases the amount of spatial filtering 
needed is much less than what would produce this undesirable 
behavior. Lastly, we have shown that a few alternative timestep- 
ping schemes discussed in the main part of this paper do not 
produce any unphysical modes that would cause a serious prob- 
lem for simulations. 

We have been able to use the yon Neumann analysis to 
actually identify optimal ranges of parameters that a simulation 
should have in order to represent the fluid limit well. Moreover, 
we have shown that these ranges are fairly restrictive. Because 
this analysis was not known to workers in the SPH field the 
parameters used in some previous simulations may have vio- 
lated some of the restrictions presented here. Based on our 
analysis we have also been able to motivate a large body of 
fruitful directions that future research on the theory of SPH 
should take. On realizing that the codes and figures used to 
generate the perspective in this paper might also be useful to 
others in optimizing their SPH algorithms, the author is willing 
to make them available on request. 

In the process of carrying out this analysis we have also 

been able to make algorithmic compfirisons between SPH and 
modern day higher order finite difference schemes. We see that 
the SPH formulation has no local mass, momentum, and energy 
conservation, the way all good finite difference schemes do. 
This lack of local conservation should strongly affect SPH's 
ability to track down a steady state and iterate it to convergence 
just as it does for finite difference schemes that are not in the 
locally conservative form. So far applications of SPH have not 
included problems where the numerical code was required to 
converge to a steady state and hold it for several thousand 
timesteps so no real data is available. No discrete entropy 
condition has been proved for SPH which is a severe disadvan- 
tage in the algorithmic evolution of SPH. There is no TVD 
property in SPH nor a strong entropy enforcement. The method 
relies on an artificial viscosity formulation which makes it 
similar in that respect to finite difference algorithms that are 
over 30 years old. The order of spatial accuracy in an SPH 
calculation cannot be guaranteed after the particle positions 
have randomized to a substantial extent. We also see that for 
the propagation of sound waves, SPH offers no special advan- 
tages over finite difference schemes. It does advect the entropy 
wave exactly but finite difference schemes with order greater 
than five or six have an ability to do spectrally accurate advec- 
tion too. In summary, it seems that more algorithm evolution 
is needed before SPH can achieve the quality of modern day 
high order, high resolution finite difference schemes. 

A P P E N D I X  A 

We now outline the derivation of the von Neumann stability 
analysis equations for the predictor-corrector scheme in the 
case where only one update is made using Eq. (35). We show 
how we can relate quantities at times n + band n + 1 to the 
quantities at times n + ~-and n. First write out the normalized 
form of the predictor step, Eq. (33), using Eq. (31) as needed, 

~lr(t "+'n) = FT(t") + ~ ~'*(k, h, e)O(t"). (A.1) 

Write down the velocity update for the predictor step between 
a n time n + ~-a d n + 1. Use (35) to simplify it and then write 

out the explicit form of v(r') from Eq. (31). Then use (A.1) in 
it to get 

or(t,,+3n) _ O(t,,+l) = 1 otkt A/Fw.(k; h)O(t "+'n) 
Y 

1 

I ik A/ Fo,(~:; kt)Tr(t"+'n). (A.2) 
2y 

Write the predictor part of the energy update in (33) between 
3 n times n + ~-a d n + I, again using Eqs. (35) and (31), to get 
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-- ' t( t  "+') + "tr(t "+3n) = --~('y --  1) A't i~:F~,(~:; h)0r(t "+''z) (A.3)  

Now for the velocity update in the corrector step equation (34) 
we have 

3 
+ - ~ oehF,,~(k; h)Or(t "+'n) 

3' 

3 
- - -  At ikF,,,(k; h)Tr(t "+"-') 

2T 

O(t "+') = O(t") + 2 ~ ahF~,,(k; ~)U(r  '+'r-) 
Y 

_ 1 ~-~ ~2Fvu(~; ~)?/r(t,+,n) _ 1 ~ ikFv,(k; h)'ir(t "+'r') 
Y 3/ 

(A.4) 

and on substituting Eq. (A.I) in it we get 

O(t "+') = 1 - -}--~TAt- k-F,,q(k; h)F*(t:, Tt, e) 8(t") 

_ 1_ At k2F~,q(k; h)gl(t") (A.5) 
Y 

+ - At othF~,(~:; h)Or(t "+~n) - 1 At ikFv,(k; ii)Tr(t"+w-). 
Y Y 

From the position update in the corrector step, Eq. (34) we get 

A t -  - - At 
?l(t "+') - - ~ F * ( k ,  h, e)O(t "+') = -~-F*(~:, ,~, e)O(t") + ?4(t"). 

(A.6) 

Substituting (A.5) into (A.6) we get 

?l(t "+~) = Att F*(k,  h, e) - -~y At- k-Fo~(k; h)P*(T(, h, e)'- O(t") 

× 1 - ~ At- k-Foq(k; h)F'*(k, h, e) ~l(t") 

+ 1 ~ t  2 othFo,(k; h)F'*(~:, h, e)or(t  "+'n) 
Y 

(A.7) 

1 Att'-ikFo,(k; h)F*(k,  "h, e)'U(t"+'n). 
2T 

and 

7r(t "+3n) = 7(t") - ~(y - 1) At ikFv,(k; h)Or(t"+lr'). (A.10) 

Now realize that (A.5), (A.7), (A.8), along with (A.9) and 
(A.10), form a system of equations relating O(t"+~), ?/(t"+t), 
70 "+ ~), 0 r(t"+3~2), and 7r(t "+3n) to their corresponding quantities 
a unit time earlier. This allows us to impose a growth factor 
between the two sets of values as shown in 

O(t ,,+1) 

z/(t ,,+1) 

7(t ,,+~) 

~ l'(l"+3n) 

/ ~T(t,,+3p-) 

= A  

~(t °) 

~/(t") 

7(r') 
Or(l .+1/2) 

~ TT(t ,,+'a) 

Substituting this in (A.5), (A.7), (A.8), (A.9), and (A. 10) gives 
an eigensystem for the growth factor. This eigensystem needs 
to be solved and its solution yields, in general, complex values 
for A. The amplitude of A then gives the growth or decay of 
the mode and the phase of A gives the propagation speed of 
the mode. 
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